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Abstract

An algorithm based on Fast Hartley Transform
(FHT) that uses a digital voltmeter for measuring the
harmonic parameters of low-frequency signals with
negligible leakage is presented. The algorithm was
compared favorably in speed with a previous one
based on discrete Fourier transforms.

Introduction

The lack of synchronization is the main factor
responsible for the leakage error in the Fast Fourier
Transform (FFT) [1] or the FHT [2].

The errors that appear in the FFT/FHT results are
referred to as leakage, whereas in the time domain
this same error is referred to as truncation error. In
both cases the error arises because the sampling is
not synchronized with the signal being sampled. An
optimized algorithm that turns negligible the
truncation error has already been developed [3].
Several technical details about that algorithm are
discussed in [4]. Its drawback is the computation
time required to evaluate the discrete Fourier
transform.

The contribution of this paper is to modify the
algorithm described in [3] for accurately evaluating
the FHT coefficients of arbitrary voltage signals.

Algorithm

Codes for fast computing the discrete Hartley
transform (DHT) are easily available as built-in
functions of most current laboratory software
packages. The operation is performed in place and
the input data array is overwritten which implies in
memory savings. The FHT is as fast as or faster than
the FFT [2]. The FHT makes it possible to dispense
with imaginary numbers in the computation of
Fourier transforms. Since the data is real, the FHT
output is also real.

The algorithm uses the same ‘Samp_parm’ routine
described in [5] to optimize the burst time Ntsamp for
a given signal frequency f0, number of harmonics m,
number of bursts n and a few other constant default
parameters. The routine outputs a number of
samples N = 2m when n = 4m and m is an even
number within the range 52-140 for f0 = 60 Hz (or
within 52-146 for f0 = 50 Hz). When using the
FFT/FHT, it is convenient to choose the number of

sample points according to N = 2γ, where γ is an
integer. Therefore, it is possible to measure 64 or
128 harmonics of a signal at power frequencies.

The digital sampling voltmeter (DSV) is configured
in the same way as described in [5], except for the
trigger level that is now selected arbitrarily by the
user so that the fundamental frequency measurement
can be done by counting level crossings at less noisy
segments of the signal.

The algorithm transfers each burst data from the
DSV to a computer where the FHT is evaluated. The
real and imaginary parts of the FFT at the k-th burst
are directly obtained as the even and odd parts of the
FHT of the corresponding burst, that is
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where j = 1, …, m. The harmonic magnitudes and
phase angles at each burst are obtained from
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The average of ajk and bjk over all bursts is then
calculated as
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and the resulting estimates Vje, θje for the harmonic
parameters are obtained from (2) by substituting ja ,

jb for ajk, bjk (the magnitudes should be doubled as
we are only interested in the spectrum for positive
frequencies). These harmonic parameters are finally
referred to the fundamental and corrected for all
known DSV systematic effects, that is
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where kbw(jf0) and kint(jf0) are the frequency response
corrections of the DSV input stages and the
integrating A/D converter at the j-th harmonic (see
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[3]), respectively, and θR is an arbitrary reference
angle. Equation (4b) assumes that the DSV input
stages can be modeled as a linear-phase filter. Note
that the correction κ of the DSV dc voltage mode
error (see [3]) was cancelled in (4a). One does not
need to care about the non negligible A/D converter
gain errors when evaluating the harmonic
magnitudes as a percentage of the fundamental.

Performance tests

A stable, high-resolution DSV was used to measure
the harmonic magnitudes and phase angles of a
periodic signal generated by a stable, digitally-
synthesized, arbitrary signal generator (also used in
[3]). The DSV was sequentially controlled by two
algorithms: (i) the FHT-based one and (ii) a one-
channel version of that described in [3].

Several nonsinusoidal signals in the 10 V range were
synthesized and separately applied to the DSV input.
Table I shows the results for both algorithms ((i) and
(ii)) when a 60-Hz half-wave rectified signal was
measured by assuming m = 64. Only even harmonics
are shown since the odd harmonic magnitudes are
small compared to the fundamental. Due to space
limitations, we report only the results for the first 16
harmonics. The differences between the results are
well within the measurement uncertainty u(dje). The
standard deviation s(dje) of the mean (same for both
algorithms) is an indication of the stability.

Table I. Comparison of harmonic magnitudes.
Har
No.

Magn. (%)
(using [3])

Magn. (%)
(using FHT)

u(dje)
(10−6)

Diff.
(10−6)

s(dje)
(10−6)

1 100 100 − − −
2 42.47780 42.47777 5.9 −0.3 1.2
4 8.49698 8.49696 5.4 −0.2 0.8
6 3.63891 3.63879 5.4 −1.2 0.3
8 2.02127 2.02115 5.4 −1.2 0.3
10 1.28745 1.28734 5.4 −1.1 0.2
12 0.89443 0.89431 5.4 −1.2 0.3
14 0.65335 0.65323 5.4 −1.2 0.2
16 0.49962 0.49955 5.4 −0.7 0.2

Table II. Comparison of measuring times.
m Aperture

time (1) (ms)
Meas. Time
(using [3])

Meas. Time
(using FHT)

64 0.1003 60 s 35 s
128 0.0352 3 min 40 s 1 min 23 s

(1) taper = tsamp − 0.00003 s [5].

It is assumed that the uncertainty associated with the
results is the same for both algorithms. In order to
minimize the running time, the uncertainty analysis
is only made by the algorithm (ii). The uncertainties
associated with dje and γje are
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where u(θje) = u(Vje)/√2Vje and u2(Vje) is evaluated
from equation (3) in [3].

It was also verified that the FHT-based algorithm is
capable to measure 128 harmonic magnitudes as a
percentage of the fundamental of half-wave rectified
signals at power frequencies (with about 44% THD),
with an uncertainty of less than 5 parts in 106

relative to the fundamental.

It is of interest to know how the FHT-based
algorithm compares in speed with that based on the
discrete Fourier transform. A computer with 166-
MHz clock was used to obtain the results in Table II.
Though the data acquisition and transfer require
some fixed time to be accomplished, further
reduction in measuring time is to be expected with
faster computers.

Conclusions

It was verified that an algorithm based on Fast
Hartley Transform and Swerlein’s algorithm can be
used to accurately measure 64 or 128 harmonic
magnitudes as a percentage of the fundamental of
distorted signals at power frequencies with
acceptable measuring times. Evidences show that it
is possible to neglect the leakage error with this
algorithm. The algorithm was compared favorably in
speed with a previous one based on discrete Fourier
transforms.

The measurement uncertainty would be even less if
one assumes m = 256, but unfortunately the ‘Samp-
parm’ routine in [5] does not output a power-of-two
number of samples at power frequencies when
inputted with n = 4×256 = 1024 bursts. Changes
have been  made in the routine to solve this problem,
but they resulted in degraded measurement
uncertainties. Anyway, this topic deserves further
investigation.
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