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Abstract  - The manufacturers specify the long term stability of their measuring standards. This parameter is
sometimes the largest uncertainty contribution to the overall uncertainty of the standard. An automated system
for the evaluation of the stability of measuring standards using Bayesian statistics was developed. For several
standards it was verified that the stability estimate is much smaller than the value specified by the manufacturer.
The software for data analysis was implemented in language C in the environment LabWindows/CVI.

I. Introduction

The classical  approach considers the probability of an event as an objective property of that event, always
subject, in principle, to empirical measurement by means of frequencies in a random experiment. On the other
hand, the Bayesian approach considers probabilities as an expression of the human ignorance. The probability of
an event is merely a formal representation of our belief that the event occurred or will occur, based on any
available information. Bayesian statistics has been increasingly applied in measurement science and technology
[1]-[4].

In this paper, the stability, drift and other parameters related to the measuring standards were estimated
based on a database containing the historic of periodic calibrations. The main justification for using Bayesian
techniques is to estimate both the stability parameters and their associated uncertainties based on small data
samples. The specific statistical techniques used here allow one to know the actual behavior of the standard in
the long term and even to make predictions of its future behavior. An automated system was developed that uses
Bayesian statistics to estimate the standard drift (or long term stability), and to predict future measurement
results, based on a data set obtained from previous periodic calibrations of the standard. This tool has been very
useful in the control and maintenance of our measuring standards.

II. Bayesian Inference

In classical  statistical theory, probabilities are assigned to observable events that occur at random as a
result of some well-defined experiment. The probability of such an event is identified with the relative
frequency of the event being observed after unlimited repetitions of the experiment performed under the same
nominal conditions. However, there are events that cannot be observed, and yet a measure of degree of belief
about their occurrence is needed. This measure is offered by Bayesian interpretation of probability as a number
that satisfies certain axioms and that is used to describe the state of incomplete knowledge – derived from the
available information – about the occurrence of an observable or no observable event.

Bayes’ Theorem, expounded in many textbooks on probability and statistics [5][6], can be understood as a
mathematical description of the learning process. Indeed, let θ represent the values of a random variable Θ.
First, an initial assessment is made of the probability density function (pdf) that reflects the knowledge
about  Θ existing before measurement data are gathered. This is called the prior (to the data) pdf, denoted here
as p(θ). Next, the prior pdf is modified according to the actual data x that are obtained during the course of the
experiment. The result is the posterior pdf, p(θ|x), from which the best estimate and the standard or expanded
uncertainty are calculated.

To construct p(θ), one should make use of all available information, such as calibration data, data from
other similar experiments, personal experience, etc. However, since this information is usually personal and
vague, the most conservative and general approach is to suppose that we start from “complete ignorance” about
the quantity.
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To incorporate the measurement data, one needs to express the probability density of observing the data x
given that the value of Θ is θ. Of course, once the data are at hand, they are fixed and can no longer be
considered as variables. Therefore, it is more natural to think of p(x|θ) as a function of the unknown value of Θ
given the data. Regarded in that sense, p(x|θ) is not necessarily a pdf. For this reason, this density (in x) is called
the likelihood function (in θ), and is denoted l(θ|x) [5].

Assuming  the vector of n available observations x = x1, x2, … , xn, if the vector of m parameters θ = θ1, θ2,
…,θm, denotes the values that can be reasonably attributed to the vector of m measurands Θ = Θ1, Θ2, …, Θm,
then the Bayes’ Theorem may be written in terms of probability densities as

p(θ | x) ∝  p(θ) . l(θ | x)                                                                     (1)

Here p(θ | x) is the posterior (to data x) probability density of θ, p(θ) is the prior (to data x) probability density
of θ and l(θ | x)  is the likelihood of θ (to given x). The likelihood is numerically equal to the probability density
of data x (given that θ  is known). It represents the additional information provided by the data.

Bayes’ theorem may be easily remembered as: Posterior ∝ Prior x Likelihood. This relation summarizes
the way one should modify the degree of belief in order to consider the available data. In the Bayesian point of
view, the prior and posterior densities are descriptions of the state of knowledge of Θ and, thus, there is no
restriction as to Θ generate random data or not. The result of Bayesian inference is uniquely determined when
the prior density is chosen.

III.  Linear Regression Model

In the control and maintenance of measuring standards, each laboratory realizes periodic calibrations and
from these measurements we may assume that we have a set of n ordered pairs of observations, the pair being
independent of one another but members of the same pair being, in general, not independent. We denote these
observations (xi, yi) and, as usual, we assume that these pairs have a bivariate normal distribution. The notation
below is adopted.

            x = Σxi /n,  y =Σyi /n,   Sxx = Σ (xi - x )2,    Syy = Σ (yi - y )2,    Sxy = Σ (xi - x )(yi - y )                   (2)

The problem here is to use the values of one variable to explain or to predict the values of another. In
Bayesian statistics this is commonly referred to as an explanatory and a dependent variable, although it is
conventional to refer to an independent and a dependent variable.

A. Linear regression

The model can be written as  yi ∼ N(α + β (xi - x ), ϕ). Because a key feature of the model is the regression
line y = α + β(x - x ) on which the expected values lie, the parameter β is usually referred to as the slope and α
is sometimes called the intercept.

By using Bayes theorem and an uninformative prior, the posterior pdf is

( ) ( ) ( ) ( ) ( ){ }[ ]∑ −−−−∝∝ −− ϕβαπϕϕϕβαϕβαϕβα 2/exp2,,,|,,,|,, 22/1 xxyppp ii
nxyyx

or                                                                                                                                                                            (3)
                            ( ) ( ) ( ) ( ){ }[ ]ϕβαϕϕβα 2/exp,|,, 222/2 bSanSp xxee

n −+−+−∝ +−yx

where See, a and b are given by

      See = Syy - Sxy 2/ Sxx = Syy (1-r2),     a = y  and  b = Sxy/Sxx,                                        (4)

Integrating out ϕ, we obtain

ns
a

/
−α  ∼ tn-2       and  

xxSs
b

/
−β  ∼ tn-2                                                       (5)

where tn-2  is a Student distribution with n-2 degrees of freedom, a and b are referred to as least squares
estimates of α and β ,and ( )2/2 −= nSs ee . The regression line

y = a + b(x - x )                                                                        (6)

which can be plotted for all x as opposed to just those xi observed, is called the line of best fit for y on x. The
standard uncertainty associated with the best estimates of the intercept and slope are, respectively:
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                                                                ( ) ( ) ( ) nsnnau .4/2 −−=  > ns
and                                                                                                                                                                         (7)

     ( ) ( ) ( ) xxSs.n/nbu 42 −−= > xxSs

When n is large,
( ) nsau =       and      ( ) xxSsbu =                                                    (8)

The interested reader may find a detailed derivation of the above expressions in [5].

IV. The software for curve adjustment, calculation of stability and other parameters

A. The software

The software comprises four panels with several fields for identification, data storage and statistical
calculations. The first panel is named “Historic” (Fig. 1) and contains the calibration database, where the
calibration date, temperature, measurement results, associated uncertainties and serial numbers (or
identifications) are stored among other data. The second panel is named “Bayesian Statistics Graph” (Fig. 2)
and displays the stability and a graph containing  the measurement results obtained from periodic calibrations as
function of the calibration dates. The third panel is named “Prediction Graph” (Fig. 3) and displays the
estimated values and the graph with the behavior of the standard as function of the time. The fourth panel (not
shown) is named “Temperature Correction” and is used to correct the values obtained in different temperatures.
The figures shown here were obtained from a 10-ohm resistor.

 Fig. 1 –  Panel displaying the standard calibration historic.

B. Curve fitting

The problem considered in this section is a special case of least-squares fitting. It is concerned with the
fitting of a curve to a two-dimensional set of points on a coordinate plane. The form of the curve is fixed and its
parameters are to be determined. In our case, the points are distributed along a straight line and we use
Bayesian statistics to estimate the slope, intercept and other parameters.
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In formal terms, we consider two quantities X(φ) and Y(φ) where φ represents  the measurement conditions.
Let these conditions be discretely variable and we define xi = X(φ) and yi = Y(φ), with i = 1, 2, ..., n. Then,
considering the data shown in Fig. 1 our task is to estimate the slope, intercept and other parameters associated
with the straight line that best accounts for the data. More specifically, given a set of measurements represented
by xi and yi, our objective is to fit a straight line that pass near of the points (xi, yi) where xi are the values that
correspond to the month and year of the  experiment and yi are the calibration results along the time [8].

C.  Stability

The stability of a measurement standard may be specified as short-term stability and long-term stability.
The short-term stability  is defined as repeatability (of results of measurements) - closeness of the agreement
between the results of successive measurements of the same measurand carried out under the same measurement
conditions . The long-term stability refers to the ability of a measuring instrument to maintain constant its
metrological characteristics along the time. Drift is a slow change of a metrological characteristic of a
measuring instrument or standard [7].

The stability and drift are estimated by applying Bayesian statistics to sample data obtained from a
historic database obtained from successive calibrations. The data for the calculation of the stability are: the date
and the measurement result in each calibration. As mentioned before, these data correspond in the graph
(xi, yi) where xi are the values that correspond to the month and year of the experiment and yi are the calibration
results along the time.

Fig. 2 –  Display panel with the stability graph.

The drift was taken as the slope of the regression  line. When the graph with the results of calibrations
along the time presents a  linear behavior the values obtained  for the stability and drift are practically same.

The calculations of the stability, drift and the other parameters were totally automated. Then, using the
rationale shown in section III, we obtained from (4) the stability (s), the slope (b) and the intercept (a). From
(7) and (8) we obtained the uncertainties associated with the last two quantities. Equation (6) is used in the
graph construction. These calculations are shown in  Fig. 2, where in the upper left side there are some fields for
graph plotting, while in the lower side some results obtained from the statistical calculation are shown. The
graph also displays the regression line. These data are used to quantify the  stability of the standards, as well as
to calculate other important parameters.
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D.  Prediction

Now we are interested in the distribution of a potential observation of a value x = xo, that is, the predictive
distribution, and then, the result is slightly different. The mean of such observations conditional on x, y and xo is
still a + b(xo - x ), but since we have a new distribution, in addition to this new distribution for

( )xxy oo −−−= βαγ , it follows that [5]
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The standard uncertainty associated with the predicted  value is:
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0
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When n is large,                                                                                                                                                   (10)

xxSxxnsyu /)(1)( 2
0

1
0 −++= −

The results obtained  are shown in the third panel below (Fig. 3), where the graph displays the regression
line. The dashed lines represent the uncertainties associated with the predicted values. These data are used to
quantify the standard drift as well as to predict future values. The prediction results are very useful for the
maintenance of the standards.

Fig. 3 –  Display panel with the prediction graph

V. Results

As an example of the application of  Bayesian statistics to  the evaluation of  stability of standards, tests
were done with two different quantities. The following table shows the results obtained with standard inductors
and standard resistors [8].
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Equipment Model Identification Nominal
value

Declared
stability Estimated stability

Standard Resistor NBS/4020-B R-5A 1 Ω 10 ppm 0.3 ppm
Standard Resistor NBS/4020-B R-5B 1 Ω 10 ppm 0.3 ppm
Standard Resistor NBS/4020-B R-6B 10 Ω 10 ppm 0.5 ppm
Standard Resistor NBS/4020-B R-7A 100 Ω 20 ppm 0.7 ppm
Standard Inductor GenRad-1482L I-B5 10 mH 0.01 % 0.01 %
Standard Inductor GenRad-1482H I-A6 100 mH 0.01 % 0.01 %
Standard Inductor GenRad-1482T I-A8 10 H 0.01 % 0.008 %

        Table 1. Comparison between the stability declared by manufacturer and the stability estimated by Bayesian statistics.

The analysis of the results shows that:

1) The stability estimate of all standard resistors was smaller than that declared by the manufacturer. The results
show that the manufacturer was very conservative;

2) The stability estimate of two standard inductors was equivalent to the manufacturer specification. The
stability estimate of one of the standard inductors was smaller than that declared by the manufacturer. As the
method works better for a large time interval, we believe that in the future we can have a reduction of the
estimated value of the stability.

VI.  Conclusion

The results obtained show that the automated system developed for the evaluation of the stability of
measuring standards using Bayesian statistics is very useful. The calculations show that for several standards the
stability estimate is much smaller than the value specified by the manufacturer. This reduced estimate leads to a
smaller overall uncertainty of measurement and consequently to an improvement of the calibration process.
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