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Abstract

A model is proposed for a sampling algorithm that uses a
high-resolution voltmeter for measuring the RMS value
of a sinusoidal voltage waveform. The uncertainty
associated with the result of measurement is evaluated
according to the rules in the ISO/BIPM Guide to the
Expression of Uncertainty in Measurement.

Introduction

About ten years have passed since the introduction of the
Swerlein´s algorithm. It was developed for the accurate
measurement of RMS voltage at low frequencies using an
HP 3458A digital voltmeter [1]. The algorithm has been
exhaustively tested. Differences of less than 1.2⋅10-6

between it and a multi-junction thermal converter were
reported for voltages in the 10-V range and frequencies in
the 10-100 Hz range [2]. Differences of less than 10⋅10-6

were also reported for voltages in the range 0.2-20 V and
frequencies up to 1 kHz [3]. The algorithm has been
extensively used as a standard in industry.

The contribution of this paper is to provide an evaluation
of uncertainty in measurement according to the
ISO/BIPM Guide to the Expression of Uncertainty in
Measurement [4]. A model for the algorithm is presented
and the uncertainty contributions are evaluated.

Model

The algorithm samples a member of the ensemble of a
random process V(t) at times ti, i = 1, 2, ... , burstNN ⋅ .
Considering the samples as random variables Vi = V(ti),
estimates for  the  expectation,  variance and power in the
process are, respectively,
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An estimate of the DC component is obtained from the
sample average. An estimate of the RMS value (without
the DC component) is evaluated from the central moment
of order 2 of the sample. The RMS value results from the
estimate of the square root of the power in the random
process.

The model used for the measurement of the RMS value
(without DC component) is
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where Vi is the sample corrected for all the known
systematic effects and R is equivalent to the difference
between the indication that would be obtained with an
ideal A/D converter (not limited by resolution) and the
indication of a real integrating A/D converter (IADC).

After being applied to input terminals, the signal is
conducted to a passive signal conditioner. In the 1 V and
10 V ranges, the conditioner is a unit-gain low-pass filter
whose response falls at 20 dB/decade above 120 kHz.
The filter output impedance is 10 kΩ. The signal is then
applied to an active amplifier. In the 1 V and 10 V
ranges, the amplifier gain is 10 and 1, respectively, and
its bandwidth is greater than 1 MHz. If the voltmeter is
configured for the 100 V and 1000 V ranges, the passive
signal conditioner is a resistive divider with 100:1 ratio
composed of a 10-MΩ resistor and a 100-kΩ resistor.
Printed circuit board capacitance and dissipation factor
make it difficult an evaluation of the frequency response
above 1 kHz. For low frequencies, the frequency
response can be modeled as a term that falls at 20
dB/decade above 36 kHz. Finally, the signal is applied to
the IADC. In the time-domain, the response is an average
of the input signal over a time interval equivalent to the
aperture time specified by the user. This average value is
generally different from the waveform value at the
middle of the aperture time interval Aper. The relation
between the signal value at time ti and the uncorrected
sample Vi’ is,

iaAperfi VKKKKV ′⋅⋅⋅⋅=    (5)
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where Kf is the frequency response correction (finite
bandwidth) of both the passive signal conditioner and the
active amplifier, KAper is the IADC frequency response
correction (finite aperture time), K is the correction of the
DC voltage mode error, and Ka is the correction of the
error introduced by the input attenuator. Substituting (5)
in (4),

RSKKKKV aAperfACRMS +′⋅⋅⋅⋅=    (6)

where,
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Assuming independent quantities, the square of the
relative standard uncertainty associated with the
measurement result can be approximated as
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Numerical values for the relative standard uncertainty at
several frequencies and voltage ranges are listed in Table
I. They were evaluated from the uncertainty contributions
related in the next section. It is assumed that the signal is
generated by an ideal voltage source.

Table I. Relative standard uncertainty (parts in 106).

Frequency (Hz)
Range (V) 1 10 100 1000
1 / 10 2 / 1.8 2 / 1.8 2.5 / 2.3 30
100 / 1000 2.4 / 2.3 2.4 / 2.3 4.1 230

Uncertainty Contributions

Conditioner and Amplifier Frequency Response
Correction

Based on the previous description of the input conditioner
and amplifier, this correction is

( )21 BWf FFK +=    (8)

where F is the signal frequency and FBW is the cut-off
frequency (120 kHz @ 1 V/ 10 V ranges and 36 kHz @
100 V/ 1000 V ranges). These responses model the
voltmeter behavior with a relative standard uncertainty
associated with the cut-off frequency of

=BWBWF Fu / 30% [1]. Taylor expanding (8),
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The square of the standard uncertainty associated with
this correction is
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where, neglecting the relative standard uncertainty
associated with the time base (0,01%),
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IADC Amplitude and Time Base Resolution

The IADC resolution is equivalent to the relative
difference between the algorithm indication that would be
obtained by an ideal A/D converter, not limited by
amplitude resolution RA and time base resolution ∆, and
the indication of the real IADC. It can be modeled as

∆+= ARR ,  (12)

The relative difference between the algorithm indication
resulting from a burst of the real IADC, i.e.,
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and the indication ( 2A ) of an ideal A/D converter not
limited by resolution can be approximated for large N by
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In order to reduce the measurement time, the algorithm
tries to take a burst of N samples spaced of Tsamp, where
N⋅Tsamp is an integer number of periods, so that the
numerator of (14) becomes null. In practice, however,
due to the 100-ns time base quantization of the voltmeter
[5], for a given number of samples, the total sampling
time can differ up to 100N ns from an integer number of
periods. This difference reaches a maximum when 10-7N
= Tsamp, as it is always possible to choose N so that the
difference between the total sampling time and an integer
number of periods is less than Tsamp. Thus, as Tsamp is
small, (14) can be written as
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  , 10-7N < Tsamp  (15)

∆ ≤ ( )Φ+⋅ Ft
N
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It should be noted from (15) that the sampling period
should be as large as allowed by the required bandwidth,
that can be defined as Nharm⋅F, where Nharm is the
minimum number of waveform harmonics that will be
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sampled without aliasing (typically Nharm = 6). The
maximum sampling period should attend the sampling
theorem, i.e., Tsamp < 1/2NharmF. If it does not, the
algorithm increases the sampling frequency in order to
assure the alias occurrence exactly at Nharm⋅F. The
manufacturer specifies the maximum aperture time for a
given sampling period in order to prevent trigger-too-fast
errors [5]. The algorithm takes this into account and
estimates the aperture time as Aper = Tsamp - 3⋅10-5 s.

The IADC amplitude resolution decreases with the
aperture time. In order to preserve a minimum amplitude
resolution of 6½ digits (21 bits), the selected aperture
time should lie between 100 µs and 10 ms [5]. The
voltmeter accuracy is also degraded as the aperture time
decreases, so that a target aperture time of 0.001 s is
typically selected. Due to the above bandwidth
requirement the actual aperture time is kept almost
constant up to F = 1/2NharmTsamp where it starts decreasing
with the signal frequency as Aper = 1/2NharmF - 3⋅10-5 s.
Eventually, it becomes less than 100 µs so that an
amplitude resolution of 5½ digits (18 bits) is observed in
the high frequency range. The probability density
function (pdf) associated with RA is rectangular.

The algorithm also minimizes the ripple that depends on
the initial sampling time in (14). The internal level trigger
of the voltmeter is used to start a burst delayed ΤD from
the waveform null-crossing. The difference between the
indications of the ideal and real converter is thus “frozen”
in time in a value
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If Nburst bursts of N samples are taken delayed from each
other by a time interval TD = 1/NburstF, and the average of
the Nburst results is evaluated, the “frozen” limits (for each
value of TD) will be cancelled. Assuming a conservative
limit of ∆/20 for this cancellation,

( )NTMin samp 401,410 8−≈∆  (18)

The pdf associated with ∆ is also rectangular.

The ripple frequency in (17) is 2F. The sampling theorem
implies a maximum value for TD of 1/4F, i.e., a minimum
number of 4 (four) bursts, if the waveform is to be
sampled over a period. If the input signal has harmonics,
then the ripple will have higher frequency components,
and this will require smaller delays, i.e., a bigger number
of bursts. It can be shown that the distortion introduced
by a third harmonic generates ripple additional
components of frequencies 2F and 4F and that the
amplitudes of these components, for a 1% distortion, are
much smaller than the main ripple [1]. As the algorithm

assumes a pure sinusoidal waveform, there is no need to
work with more than 6 (six) bursts.

IADC Frequency Response Correction

The relation between the average value of the input signal
over the selected aperture time and the uncorrected
sample Vi´ is

iafi VKKKM ′⋅⋅⋅=  (19)

where the average value Mi is
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In the specific case of a pure sinusoidal waveform,
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Substituting (23) in (21) and comparing with (5), the
IADC frequency response correction is
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Differently from all corrections, this one is significant,
i.e., for a 1 ms aperture time and 100 Hz fundamental
frequency, the correction is nearly 2%. However, this
error may be accurately corrected. Taylor expanding (22),

( ) !31/1 2AperFVVK Aper ⋅⋅+=+≈ πδ  (23)

The square of the standard uncertainty associated with
KAper is given by an expression similar to (10). As the
clock used for the sample timing is also used to establish
the time in the frequency measurement, it is sufficient to
consider the relative standard uncertainty associated with
the aperture time, i.e.,

( ) 2222
/ 4/ AperuVVu AperVV =δδ  (24)

where, uAper/Aper is evaluated from the relative standard
uncertainty associated with the time base (0.01%) and the
aperture time resolution RT (100 ns or 0.01%⋅Aper). The
pdf associated with RT  is rectangular.

It should be observed that a great amount of the
uncertainty associated with the measurement of RMS
value of distorted waveforms is related to the fact that
(22) corrects the IADC frequency response only for the
fundamental frequency of a distorted waveform. The
algorithm assumes a pure sinusoidal waveform. No
attempt is made to evaluate the consistency of this
assumption.
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DC Voltage Mode Error Correction

The correction of the DC voltage mode error can be
modeled as

GLDC KKKK ⋅⋅= ,  (25)

where KDC is the correction of the error listed in a
calibration certificate, KL is the correction of the linearity
of the instrument and KG is the correction of the IADC
gain error for aperture times less than 1 s. The
manufacturer states the error limits for each voltage range
and calibration period [5]. The 24-h basic accuracy is
chosen in this paper. This accuracy is based on a aperture
time equivalent or greater than 1 s and is degraded for
smaller aperture times. The limits of the gain error are
also provided by the manufacturer. The pdf associated
with KL is rectangular (idem for KG).

Input Attenuator Error Correction

In the high voltage ranges, the input signal passes through
an attenuator with a 100-kΩ output resistance. In the path
to the amplifier, the signal faces a 35-pF capacitance of
low dissipation factor (FET inputs, ceramic capacitors,
etc) and about 15-pF printed circuit board capacitance of
high dissipation factor. In the low voltage ranges, the
input signal is conducted to a 10 kΩ resistor whose
output is applied to about 120-pF capacitance and about
15-pF printed circuit board capacitance.

A capacitor C that has a dissipation factor Def acts as it
had a resistance in parallel equivalent to 1/2πFCDef. This
resistance creates a resistive divider with the attenuator
output resistance Ro. The correction of the error caused
by this divider is

efoa CDFRVVK πδ 211 +=+≈  (26)

This correction was not implemented in the original
program [1]. The evaluated error was then regarded as an
uncertainty contribution. The square of the standard
uncertainty associated with this correction is given by an
expression similar to (10). Neglecting the relative
standard uncertainty associated with the time base,

( ) 22222222
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The printed circuit board dissipation factor is known to
vary randomly from one batch to the next according to a
frequency distribution that is not gaussian. The lowest
observed low frequency dissipation factor is 0.2% and the
highest is 10%. The printed circuit board capacitance has
a typical dissipation factor of 0.4%. Thus, for the high
voltage ranges, the best estimate def of the effective
dissipation factor of the 50-pF combined capacitance is
0.12% (= 0.4% x 15/50) and its value is between the

limits a- = 0.06% and a+ = 3%. As the best estimate is not
in the middle of the interval, the pdf cannot be uniform
throughout the interval [4]. Based on the Principle of
Maximum Entropy [6], it can be shown that the pdf in the
asymmetric case has a variance

( ) λ−+−+ −−= bbbbu
efD

2  (28)

where the lower limit is written as a_ = def – b_ and the
higher limit as a+ = def – b+. The relative standard
uncertainty associated with the effective dissipation
factor is 50%. The uncertainties associated with the
attenuator capacitance and output resistance are evaluated
as 20% and 5%, respectively.

Noise

The standard uncertainty associated with each
uncorrected sample can be evaluated from the
information about the noise in the individual samples.
The RMS value of the noise is provided by the
manufacturer [5].

Conclusion

A model was proposed for the Swerlein´s algorithm. An
evaluation of the standard uncertainty associated with the
algorithm estimate was presented. The standard
uncertainty was evaluated to be less than 5⋅10-6 in the 1-
1000 V and 1-100 Hz ranges. The uncertainty
contribution associated with the conditioner and amplifier
frequency response correction is dominant in the high
frequency range.
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